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SUMMARY

Twenty years ago, the multidimensional, positive de�nite, advection transport algorithm was intro-
duced by Smolarkiewicz. Over the two decades since, it has been applied countless times to numerous
problems, however almost always on rectilinear grids. One of the few exceptions is the Operational
Multiscale Environment model with Grid Adaptivity (OMEGA), an atmospheric simulation system orig-
inally designed to simulate atmospheric dispersion in the planetary boundary layer, but since then used
for both mesoscale (from meso-� to meso-�) dispersion and weather forecasting. One of the unique
aspects of OMEGA is the triangular unstructured grid geometry which leads in a natural way to the
creation of a global grid with continuously variable resolution from roughly 100 km over the oceans to
less than 10 km over regions of interest. Another unique aspect is the concept of dynamically adapt-
ing grid resolution—sometimes also called solution-adaptive grid resolution. A central element of the
modelling system, however, is its advection solver—MPDATA. This paper presents the implementation
of MPDATA on an unstructured grid and demonstrates its accuracy and e�ciency using analytic and
idealized test cases. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the early days of computing, geophysical �uid dynamics (GFD), predominately numerical
weather prediction (NWP), was a dominant factor in the design of computer architecture
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and algorithms. This early work focussed initially on solving a �nite di�erence equation
on a uniform rectilinear computational grid and later on spectral methods. After the initial
work of Charney [1], Charney et al. [2], and Arakawa [3], however, the focus shifted from
the basic algorithms for the numerical solution of the fundamental di�erential equations to
improvements in the model physics. Further work on fundamental numerical algorithms shifted
to other disciplines—predominately the then emerging aerospace community.
In spite of this shift of focus, some researchers continued fundamental work into advection

solvers for atmospheric applications. In 1984, Smolarkiewicz introduced the multidimensional
positive de�nite advection transport algorithm (MPDATA) [4]. Since that time, MPDATA
has been implemented in numerous atmospheric and other models (e.g. [5–7]), though always
based upon a structured rectilinear mesh.
At the same time meteorology was bene�ting from this research and technology boom,

computational �uid dynamics (CFD) researchers were creating new innovative numerical tech-
niques designed to model �uid �ows around complex geometries. In the 1970s and early 1980s
the models developed for aerospace engineering and plasma physics were surprisingly similar
to their counterparts in the atmospheric sciences. The grids were composed of regular, rectan-
gular cells extending from no-slip or free-slip surfaces. As more computational power became
available and atmospheric modellers were implementing more physics into their models, CFD
practitioners were busy re�ning complex gridding techniques around irregular surfaces. One
of the methodologies developed was the use of unstructured triangular grids [8, 9].

Figure 1. (a) Static adaptation creates a grid that captures the complex terrain and land/water boundaries;
(b) dynamic adaptation puts high resolution only where required leading to computational e�ciency. The
left panel shows a grid created for the San Francisco Bay area; the right panel shows the Hurricane
Floyd (1999) grid and wind speed (shading) at initialization and (inset) the high resolution portion

48 h into the forecast. (The observed storm track is shown at 6 h intervals by the symbols.)
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Starting in 1991, this paradigm of unstructured adaptive grids was applied to atmospheric
simulations. This paradigm has the advantage of tremendous �exibility in providing high
resolution where required by either static physical properties (terrain elevation, coastlines, land
use) or the changing dynamical situation (cf. Figure 1). The e�ort resulted in the Operational
Multiscale Environment model with Grid Adaptivity (OMEGA) [10]. The OMEGA model
with the embedded atmospheric dispersion model (ADM) is an atmospheric simulation system
originally designed for real-time airborne hazard prediction. Because this problem involves
extensive interaction between the atmosphere and the surface, the ability to accurately model
the terrain features is of paramount importance. OMEGA has demonstrated its ability to
accurately predict the transport and di�usion of hazardous releases [11] as well as to accurately
forecast the track of hurricanes [12]. Originally designed for regional simulations, the model
has since been extended to support the ultimate multiscale modelling challenge—global to
local scale atmospheric simulation.
While the gridding scheme utilized in OMEGA was new to atmospheric simulation, the

base advection scheme was not. The MPDATA algorithm was adapted to the unstructured
mesh. While this was a unique application of MPDATA, it was a natural extension of the
original formulation and the details of that adaptation and a demonstration of the results is
the topic of this paper.

2. ADAPTIVE UNSTRUCTURED GRIDS

The basis for all computational methods is the assumption that a function f(x) is known at
a set of discrete points xi. The function is then expanded in a Taylor series. While a uniform
grid analysis improves the solution by increasing the number of terms of the Taylor series that
are retained, an adaptive grid analysis utilizes knowledge of the terms themselves to achieve
the same result. A demonstration of this can be seen for the Gaussian function (f(x)=Ae−x2)
on the interval from 0 to 10 (Figure 2). A 21-point uniform (grid spacing 0.5) grid and an
11-point nonuniform grid of this function can both have an integral accuracy of 0.5%. Where
the slope is constant, however, the adaptive grid represents the function by only a few points.
The real bene�t of adaptive grids arises when the breadth of scales of the physical system is
large. In the case shown in Figure 2, the range of scales was 10 (the domain) to 1 (sigma);
in the atmosphere, the range of scales can be far greater.
Unstructured triangular grids are the logical extension of the adaptive grid discussed above

into two dimensions. The OMEGA grid generator creates an atmospheric grid by tessellat-
ing the surface of the Earth using triangular tiles (cf. Figure 1) and then constructing radii
through each of the surface vertices. A set of surfaces is then constructed that are terrain
following near the surface and spherical at high altitude. While completely unstructured three-
dimensional (tetrahedral) meshes have been used for other purposes [13, 14], the bene�t of
having a structured vertical dimension in an atmospheric grid is a signi�cant reduction in the
computational requirements of the model. Speci�cally, the structured vertical grid enables the
use of a tri-diagonal solver to perform implicit solution of both vertical advection and vertical
di�usion. Since in many larger scale applications the vertical grid spacing is one or more
orders of magnitude smaller than the horizontal grid spacing, the ability to perform vertical
operations implicitly relaxes the limitation on the time-step.
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Figure 2. Two representations of a Gaussian. The grey curve represents a 501-point baseline representa-
tion, the black curve with dots shows a 21-point representation using a uniformly spaced (grid spacing

0.5) grid, and the diamonds show an 11-point adaptive grid representation.

The �exibility of unstructured grids facilitates the meshing of arbitrary surfaces and vol-
umes in three dimensions. In particular, unstructured grid cells in the horizontal dimension
can increase local resolution to better capture topography or the important physical features of
atmospheric circulation �ows and cloud dynamics. As mentioned in the introduction, the �rst
application of adaptive, unstructured grids to atmospheric simulation is the OMEGA modelling
system. A complete description of this system can be found in Bacon et al. [10]. Boybeyi
et al. [11] presents details of the OMEGA ADM and the results of an extensive model
evaluation against data from the European Tracer Experiment (ETEX) [15, 16]. Gopala-
krishnan et al. [12] presents the application of OMEGA, including dynamic adaptation, to
hurricane track forecasting and a comparison against observations for 20 forecasts covering 8
storms.
In addition to OMEGA, Varvayanni et al. [17] have used unstructured prisms in a diagnostic

ADM, which reads in a �ow �eld and interpolates it over the mesh to predict the trajectories
of tracers. In their case, they take advantage of the ability of unstructured grids to resolve
the underlying terrain in a more realistic and e�cient manner. Ghorai et al. [18] have used
tetrahedral meshes to provide solution-adaptation in both horizontal and vertical, also for
atmospheric dispersion calculations. Behrens et al. [19] have implemented a semi-Lagrangian
advection scheme on unstructured adaptive grids for weather forecasting. These applications
have shown the various inherent strengths of unstructured grids such as better representation of
topography, computational e�ciency (via static or dynamic grid adaptation), and the �exibility
of the grid to resolve multiple scales.
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3. GRID GENERATION

Since the accurate solution of any complex computational problem depends on adequate spatial
discretization of the computational domain, the accurate representation of multiscale events
in numerical models has long been a principal issue in CFD. For example, one typically
desires to capture not only the development and evolution of small-scale features but also
their interaction with and in�uence upon the larger-scale �ow. This is a particularly important
requirement in atmospheric models, because numerous events such as fronts, clouds, and
plumes are not only relatively localized with respect to their environment, but are also forced
on scales larger than their own. Because practical limitations in computer size and speed
prohibit the use of uniformly high spatial resolution appropriate for the smallest scales of
interest, numerous techniques have been developed to deal with multiscale �ows.
Grid nesting techniques involve the sequential placement of multiple �ner scale meshes

in desired regions of the domain so as to provide increased spatial resolution locally. The
decision to spawn one or more sub-meshes is typically subjective and manually directed.
Some formulations allow the sub-meshes to move with particular features in the �ow, such
as hurricanes [20]. A principal limitation of grid nesting technique, however, is that one must
know a priori and for the duration of the calculation the regions of the domain that will
require high spatial resolution. In other words, the trajectory of the moving grid has to be
pre-de�ned and therefore cannot be used for prediction. Another principal limitation of grid
nesting technique is the interaction among multiple nested meshes, particularly the tendency
for propagating dispersive waves to discontinuously change their speeds upon passing from
one mesh to the next and to re�ect o� the boundaries of each nest due to an impedance
mismatch across the mesh boundaries [21].
One advantage of unstructured grids is the ease with which dynamic grid adaptation can

be implemented. There is no longer a need for involved user-expertise=interaction for creat-
ing topologies of complicated terrain features; the whole procedure can be fully automated,
a feature that is not only highly desirable, but is required in operational settings. Also, since
the unstructured grid is a single mesh with a smooth and continuous transition from coarse
to �ne regions within the whole domain, the model is naturally two-way scale interactive
without the interpolation error caused by the transfer of information from one nest to another.
This also eliminates the wave re�ection problem common in nested grid models.
The OMEGA model is currently the only operational atmospheric �ow model based on the

unstructured grid technique. It can adapt its grid both statically and dynamically to di�erent
criteria. Static adaptation creates a numerical grid resolving �xed features (e.g. land–water
boundaries, terrain gradients, and=or any other feature that the user includes in the adaptation
scheme) with a resolution that smoothly varies from the maximum to the minimum speci�ed
(Figure 1(a)). In addition, OMEGA grids can be further re�ned in one or more speci�c
geographical areas that can be speci�ed at the time of grid creation. Dynamic adaptation
(Figure 1(b)) adds the periodic re-adaptation of the grid to regions that require high resolution
during the course of a simulation (e.g. frontal zones, hurricane circulation, pollutant plumes).

3.1. Static grid adaptation

The total number of grid points necessary to perform a successful numerical computation
that recovers the correct physics can be greatly reduced in an unstructured grid. By this
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we mean that the recovery of the model physics at the smallest length scale resolved does
not require the complete domain to have the same resolution. The resources of the numer-
ical and computational machinery are focussed on the regions of importance. This is es-
pecially signi�cant for three-dimensional hydrodynamic problems, where our experience has
shown the resulting economy can make the di�erence between tractability and intractability
(cf. [8]).
In OMEGA, the adaptation of the unstructured grid takes place through a variety of grid

operations including vertex addition, vertex deletion, vertex reconnection, and edge bifurca-
tion (cf. [10]). The OMEGA grid in the ‘static’ adaptation case is adapted a priori to resolve
static features such as terrain gradients, land–water boundaries, and=or any other feature that
the user includes in the adaptation scheme. The grid can also be re�ned in one or more
speci�ed geographical areas, such as theaters of operation, by the speci�cation of rectangular
regions in which higher resolutions are speci�ed. Within each region, grid generation is gov-
erned by user-speci�ed minimum and maximum resolutions. The user can alternatively specify
a location in the domain and a radius of in�uence around it; the grid generator will then
re�ne the grid within the region of in�uence. The result of the use of high-resolution re-
gions and=or circular region re�nement is not a nested grid, but a single grid with variable
resolution.
An important feature of the unstructured grid is the ability to simulate mountains and

coastal features without the ‘stair-step’ geometry required by nested grid models (cf. [21]).
Triangular grids can naturally follow the coastline better, leading to improved land–water cir-
culations, and can better capture the geometry of mountainous regions. This is especially
important for near-surface simulations such as those a�ecting airport terminal operations
(cf. Figure 1(a)).

3.2. Dynamic grid adaptation

OMEGA also has the ability to adapt its grid during a simulation to di�erent criteria such
as frontal activity, convection, hurricanes [12], and=or a pollutant plume [22]. This enables
atmospheric features that require additional grid points for adequate simulation to be resolved
as they appear. Thus, through the combination of adaptation methods and criteria, the grid
can be coarse where the circulation is regular and smooth, but greatly re�ned where there
are sharp gradients, where topographic features are important, or where model physics or
dispersion source terms require �ne resolution.

3.3. Global grid generation

The generation of global grids [23] was simpli�ed by the addition of two features: (1) the
implementation of an initial icosahedral grid; and (2) a quadrature routine that divides a single
triangle into four new triangles. Both of these features are illustrated in Figure 3(a). Given
an initial icosahedral grid, the iterative employment of a quadrature six (6) times results in
a near-spherical grid with relatively uniform resolution of 125km (Figure 3(b)). At this point,
the usual OMEGA grid generation adaptation to the underlying terrain is enabled resulting
in a �nal grid with continuously variable resolution such as that shown in Figure 3(c). The
problems due to polar singularities are also e�ectively eliminated.
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Figure 3. The OMEGA global grids start (a) with an icosohedron, which is then re�ned
using quadrature (dotted lines). After 6 iterative re�nements, a roughly uniform mesh (b)
is created with resolution ranging from 100 to 150 km. The normal OMEGA adaptation

criteria are then applied to create the �nal mesh (c).

4. MPDATA ON UNSTRUCTURED GRIDS

The hydrodynamic elements of the OMEGA model are based on numerical methods of solution
of the Navier–Stokes equations on an unstructured grid in the horizontal direction and a
structured grid in the vertical. A standard split-operator methodology is used, calculating
advection terms explicitly and di�usion terms implicitly. In the calculation of momentum,
the pressure gradient, Coriolis, and buoyancy terms are calculated explicitly along with the
advection terms. An implicit vertical �lter and an explicit horizontal �lter are applied to the
vertical momentum. The calculation of the new momentum at each time-step thus involves
several steps, which are described below. All implicit operations are performed by tri-diagonal
matrix inversion.
MPDATA was originally developed for regular grids by Smolarkiewicz [4], Smolarkiewicz

and Clark [24], and Smolarkiewicz and Grabowski [25]. This paper describes the implementa-
tion of MPDATA on unstructured triangular prism grids. The resulting scheme is second-order
accurate in time and space, conservative, combines the virtues of the MPDATA (e.g. ability
to separately ensure monotonicity and positive de�niteness) with the �exibility of unstructured
grids [13], and can run e�ciently on highly parallel computers. The essential methodology
is described below along with a demonstration of the method on two-dimensional passive
advection test problems.
In discussing unstructured grids, it is necessary to de�ne the nomenclatures. To reiterate,

the basic control volume element in our structured–unstructured computational domain is a
truncated triangular prism. Each prism is bounded by �ve faces. For advection across each
face, it is convenient to de�ne a local coordinate system with its origin located at the centre
of the face. Each face separates the left-hand side (LHS) from the right-hand side (RHS)
such that the �ow from the LHS cell to the RHS cell is considered positive. For simplicity,
the advected variable, hereafter denoted as  , is placed at the cell centroid, while the velocity
vector is de�ned on the cell face at the origin of the local coordinate system. Figure 4 shows
the basic arrangement of the variables on a two-dimensional grid.
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Figure 4. Arrangement of the variables on a two-dimensional unstructured grid. The generic advected
variable,  , is placed at cell centroids. The subscripts L and R designate their left- and right-hand
side cell placements. The velocity is decomposed into normal and parallel components (relative to the
common edge). The �ux F is co-located with Vn at the face centres, and points in the normal direction.

In its explicit form MPDATA adapts naturally to the above construct. As posed by
Smolarkiewicz, the algorithm can be generalized to the following steps:

(1) At each cell face the low-order �ux is found in conservative form using the standard
�rst-order-accurate ‘upwind’ scheme;

(2) The advected variable is integrated using the low-order �ux;
(3) At each cell face, the low-order scheme is expanded in a Taylor series and the truncation

error in the �ux is explicitly identi�ed;
(4) The error term is cast in the form of error velocity, Ve;
(5) The correction velocity, Vc (=−Ve), is optionally limited to preserve monotonicity of

the advected variable [25];
(6) Replacing V with Vc, steps (1)–(5) are repeated a chosen number of times (=Nc) to

achieve greater accuracy.
Although Smolarkiewicz derived Vc for a rectangular grid, it can be generalized to a grid

with arbitrary control volume shape as long as the bounding faces are �at. Consider the
generic advection equation

@�
@t
+ ∇̃ · (Ṽ�)=0 (1)

To compute the change in  from time t= t0 to t0 + �t, it is necessary to integrate the �ux
�jṼj through each face j during the period �t:

��j=
∫ t0+�t

t0
�jṼj · ãj dt (2)

Here ãj= aj ên is the area vector of face j, where ên denotes the unit vector normal to the face
and pointing from left to right. For this integral, second-order accuracy in space is achieved
automatically by placing F̃=�jṼj at the centre of each face (in practice, �j at the faces is
obtained by interpolation). Similarly, to ensure second-order accuracy in time, �jṼj should
be evaluated at t= t0 + �t=2. Assuming that a leapfrog algorithm is used (i.e. Ṽj is de�ned
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at t= t0 + �t=2), we need only expand �j in a Taylor series as

�j=�0j +
@�j

@t
�t
2
+O(�t2) (3)

where the superscript 0 denotes an evaluation at t= t0. Substituting (3) for �j in (1) and
performing the time integral, (2) becomes

��j=
{
�0j +

@�j

@t
�t
2

}
Ṽj · ãj�t (4)

Now substituting (1) for @�=@t in (4) we have

��j=
{
�0j − [Ṽj · ∇̃�j + (∇̃ · Ṽj)�j]

�t
2

}
Ṽj · ãj�t (5)

If we further let vn = Ṽj · ên denote the component of the velocity normal to the face (and
thus Ṽn = vn ên), then the �rst-order upwind �ux term is given by

��upwindj = 1
2{(Ṽn + ‖vn‖ ên)�L + (Ṽn − ‖vn‖ ên)�R} · ãj�t (6)

Now letting �̃L denote the vector pointing from the cell centroid on the left to the face
centroid, and �̃R the vector pointing from the face centroid to the cell centroid on the right,
we can write

�L =�j − �̃L · ∇̃�j (7a)

and

�R =�j + �̃R · ∇̃�j (7b)

Similarly, we will let

��L =�j −�L (8a)

and

��R =�R −�j (8b)

Now we can rewrite (4) as

��upwindj = {Ṽn�0j − 1
2‖vn‖ ên(�L� + �R�)} · ãj�t (9)

The correction term is the di�erence between (4) and (9). After some algebraic manipulation,
this correction term can be written as

��c =

{
‖vn‖

(
�R −�L
�R +�L

)
− vn

[
Ṽj · ∇̃�j

��
+ (∇̃ · Ṽj)

]
�t
2

}
��aj�t (10)

where ��= (�R +�L)=2.
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The magnitude of the correction velocity is now

vc = ‖vn‖
(
�R −�L
�R +�L

)
− vn

[
Ṽj · ∇̃�j

��
+ (∇̃ · Ṽj)

]
�t
2

(11)

In actual implementation, the correction term becomes

��c =

{
‖vn‖

(
�̃R − �̃L
�̃R + �̃L

)
− vn

[
Ṽj · ∇̃�̃j

�̃�
+ ∇̃ · Ṽj

]
�t
2

}
�̃L;Raj�t (12)

where �̃ is the value of the advected quantity following the �rst-order upwind advection step.
We limit the number of correction steps to Nc = 1, since additional correction steps are

not cost e�ective. The e�ect of additional correction steps is to bring the solution closer
to second-order accuracy, which is very nearly achieved with just one correction step; the
additional accuracy attainable is limited.

5. MUSCL-TYPE SCHEME FOR COMPARISON

The description of a monotone upstream-centred scheme for conservation laws (MUSCL)
scheme used to compare against MPDATA is given in this section. Higher-order accuracy in
space for the Godunov method [26] can be achieved by constructing piecewise linear data
from cell averages [27]:

�L =�il + (xface − xil)Lface
@�il
@x

+ (yface − yil)Lface
@�il
@y

(13)

�R =�ir + (xface − xir)Lface
@�ir
@x

+ (yface − yir)Lface
@�ir
@y

(14)

where �L is the extrapolated value of the conserved quantity � on the left-hand side of the
face of the control volume, the subscript ‘il’ is used for the cell centre quantities in the cell
on the left of the face, e.g. �il is the cell-averaged value of the conserved quantity � and
(xil; yil) are the cell centre coordinates of the cell on the left. Similarly, �R is the extrapolated
value of the conserved quantity � on the right-hand side of the face, the subscript ‘ir’ is used
for the cell centre quantities in the cell on the right of the face, e.g. �ir is the cell-averaged
value of the conserved quantity � and (xir ; yir) are the cell centre coordinates of the cell on
the right. The point of intersection between the face and the line connecting the centres of
the two cells on either side of the face is denoted by (xface; yface). Lface is the limiter on the
gradient to ensure a monotonic solution. For higher spatial accuracy, these extrapolated values
are used in the �ux calculations instead of cell-centred averages.
The piecewise linear reconstruction of data is bounded by enforcing the following

condition [28]:

�minj 6�(x; y)j6�maxj (15)

where

�minj =min
i∈Nj

(�j;�i) (16)
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and

�maxj =max
i∈Nj

(�j;�i) (17)

where Nj are the neighbours of the cell j. The limiter Lface can now be determined by

Lface =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(
1;
�maxj −�0
�face −�0

)
if �face −�0¿ 0

min

(
1;
�minj −�0
�face −�0

)
if �face −�0¡ 0

1 if �face −�0 =0

(18)

where �0 is the cell-averaged value and �face is the extrapolated value on the face of the
cell. Three values of Lface are obtained for each cell (one for each face) from (18) and
the minimum of the three is used to limit the gradient at the cell centre. The gradients are
calculated using the Green–Gauss gradient reconstruction.

6. IDEALIZED ADVECTION TESTS

To test the implementation of MPDATA on an unstructured grid, several analytic and idealized
test problems were used. The �rst was a convergence study in which a tracer �eld (Gaussian
function) is rotated in two-dimensions on meshes of varying resolutions. The second was
the deformational �ow �rst proposed by Smolarkiewicz [29]. The third is the Doswell [30]
frontogenesis case and the �nal test problem was a solution-adaptive case study.
In all of these cases, the following statistics are used for comparison purposes. The root-

mean-squared (RMS) error is given by

Er ms =

√
1

ncells

ncells∑
i=1
(qexacti − qcomputedi )2 (19)

while the error is de�ned in terms of the L2-norm [31]:

EL2 =

√
ncells∑
i=1
(qexacti − qcomputedi )2Ai (20)

where ncells is the total number of cells in the mesh and Ai is the area of each cell. The
phase error is de�ned as the distance between the location of the exact maximum and the
computed maximum [6]:

Ephase =
√
(xexact − xcomputed)2 + (yexact − ycomputed)2 (21)

where xexact and yexact are the coordinates of the cell in which the tracer maxima lies for the
exact solution and xcomputed and ycomputed are the coordinates of the cell in which the maxima
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lies for the computed solution. The di�usion error was found by subtracting the computed
tracer maxima from the exact value of the tracer maxima [6]:

Edi�usion = max(qexact)−max(qcomputed) (22)

6.1. Convergence study

A convergence study was performed to demonstrate the order of accuracy of the scheme. The
domain was bounded within [−50; 150]× [0; 173:2051] and consisted of only equilateral trian-
gles. This ensured a factor of 2 increase in mesh resolution at each successive re�nement of
the mesh. A smooth Gaussian cone function was initialized, centred at (xc; yc)= (50; 0:67ymax):

q(x; y) = exp(−0:005r) (23)

r = (x − xc)2 + (y − yc)2 (24)

The rotational �ow �eld was de�ned as

u(x; y) =−!(y − y0)

v(x; y) =!(x − x0)
(25)

where u(x; y) and v(x; y) are the velocities in the x- and y-direction, respectively, !=0:1 is
the constant angular velocity and (x0; y0) is the centre of the mesh. The simulation was run
for 62:8487 s, which is the time taken by the cone to complete one revolution =2�=!. The
tests were run using four (4) schemes: (1) upwind; (2) (MUSCL)-type with slope limiter;
(3) (MUSCL)-type with no limiter; and (4) the MPDATA scheme.
Transmissive boundary conditions were de�ned with the help of ghost cells [32] which are

mirrors of the boundary cells. The solution was marched in time using a two-stage explicit
Runge–Kutta scheme [33]. A CFL criteria of 0.9 was set for all four schemes. Green–Gauss
gradient-reconstruction was used to achieve higher-order spatial accuracy for the MUSCL-type
scheme described in [34].
Figure 5 shows the concentration contours after one revolution for the di�erent schemes; the

comparison with the exact solution is shown in Figure 6, which shows concentration pro�les
at y=115:47 for x between 0 and 100. The errors and timings for the di�erent schemes
are shown in Figure 7. The mesh resolutions (dx), errors (error in the L2-norm, EL2; RMS
error Erms; di�usion error, Edi�usion; and the phase error, Ephase), timings (timecpu) and the
order of accuracy (pL2 and prms) for the MPDATA and MUSCL-type scheme are tabulated
in Tables I and II. The calculations were made on an AMD Opteron (2:19 GHz) running
SuSE Linux 9.3 with the timing obtained by the simple expedient of using the Linux ‘time’
command.
Figure 5 shows the improvement in accuracy and shape preservation by implementing one

iteration of correction step of the MPDATA scheme in the baseline upwind scheme. For
reference, the results are also compared with a MUSCL-type scheme and the MUSCL-type
scheme with no limiter. The comparison with the exact solution is shown in Figure 6, which
shows concentration pro�les at y=115:47 for x between 0 and 100. The MPDATA scheme
is slightly more di�usive than the MUSCL-type scheme (the result of MUSCL-type with
no limiter is also plotted for reference). The results of the convergence study are shown
in Figure 7. The MPDATA scheme shows second-order convergence as the mesh resolution
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Figure 5. The results of a rotating Gaussian cone test using: (a) an upwind scheme;
(b) MPDATA scheme; (c) a MUSCL-type with no limiter; and (d) a MUSCL-type scheme

with limiter after one revolution (t=62:8487 s).

approaches zero in the RMS error, the trend is not clear in the L2-norm. The average or-
der of accuracy in both the L2 and RMS error is 1.67 for the MPDATA scheme, whereas
the average order of accuracy for the MUSCL-type scheme with slope limiter is 1.89 in the
L2 error and 1.87 in the RMS error. The MUSCL-type scheme is less di�usive than the
MPDATA scheme. The shape-preservation is better for the MUSCL-type scheme on a coarse
resolution mesh shown in Figure 5, but becomes similar for both MPDATA and MUSCL-type
solutions on high resolution meshes. The MPDATA scheme, however is approximately 1.3
times faster on the �nest mesh. The phase error for the MPDATA scheme is much larger on
coarse resolution meshes but improves as the mesh resolution is increased and becomes less
than the error in MUSCL-type scheme.

6.2. Smolarkiewicz’s deformational �ow test

The deformational �ow problem, �rst proposed by Smolarkiewicz [29] and later analysed
by Staniforth et al. [35], is often used for a qualitative evaluation of advection schemes for
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Figure 6. Comparison of the results of upwind, MUSCL-type with limiter, MUSCL-type with no limiter
and MPDATA schemes for a rotating Gaussian hill test with the exact solution after one revolution.

The pro�les shown are at y=115:47 for x varying from 0 to 100 (t=68:8487 s).

atmospheric �ow simulations (e.g. [36]). The �ow �eld for the deformation test consists of
sets of symmetrical vortices and is given by

u(x; y) = Ak sin(kx) sin(ky)

v(x; y) = Ak cos(kx) cos(ky)
(26)

where u(x; y) and v(x; y) are again the velocities in the x- and y-directions, respectively,
k=4�=L, A=8 and L=100 units. The domain was bounded by [0; 100]× [0; 100]. The
unstructured mesh was de�ned in terms of boundary edges (100 edges on each side). The
resulting mesh consisted of 38 510 triangles with the edge lengths ranging from 0.42 to 1:28m.
A tracer cone with a height of 1unit and radius of 15 units was initialized in the middle of
the domain. The mesh, boundary conditions, gradient reconstruction technique, were the same
as in the rotating cone test. A four-stage Runge–Kutta explicit scheme was used to march the
solution in time. Figure 8 shows the tracer distribution at time=T=50 (T =2637:6s is the �nal
time of integration used in [29]). Figure 9 shows the comparison with Staniforth’s analytical
solution for tracer values between x=25 and 50, for y=50. The pro�les of the computed
tracer �eld are generated by interpolating the data from the cell centres closest to points on
the line (25; 50)–(50; 50). The Staniforth solution is computed numerically and requires an
input of sampling interval. For the comparison shown in Figures 8 and 9, a sampling interval
of 0.1 was used. Staniforth et al. [35] discussed this test case in detail. They point out that
for a mesh resolution of 1 used in [29], the numerical solution is valid only for time 6T=50.
After time ¿T=50 the features of the tracer �eld become too small to be e�ectively captured
by a mesh resolution of 1, normally used for this test.
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Figure 7. Reduction in error for di�erent schemes with increase in mesh resolution
and the associated computational cost.

Table I. MPDATA.

dx EL2 pL2 Erms prms Edi�usion Ephase timecpu

6.25000 6.302 — 0.0390 — 0.382 7.216 0.668
3.12500 2.314 1.45 0.0143 1.45 0.106 1.804 5.613
1.56250 0.680 1.92 0.0042 1.77 0.036 0.902 50.38
0.78125 0.196 1.63 0.0012 1.81 0.010 0.000 530.346

6.3. Doswell’s frontogenesis test

The Doswell frontogenesis problem [30, 37] is an idealized model describing the interaction
of a nondivergent vortex with an initially straight frontal zone. The �ow �eld was de�ned
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Table II. MUSCL-type with Barth–Jesperson slope limiter.

dx EL2 pL2 Erms prms Edi�usion Ephase timecpu

6.25000 2.932 — 0.0180 — 0.279 3.608 0.891
3.12500 0.692 2.08 0.0041 2.13 0.088 3.125 7.771
1.56250 0.166 2.06 0.0010 2.00 0.027 1.563 70.244
0.78125 0.058 1.52 0.00036 1.47 0.008 1.193 694.5

Figure 8. The initial conditions (a), and the results of the Smolarkiewicz deformational �ow test using
(b) an upwind scheme, (c) MPDATA, and (d) a MUSCL-type scheme with slope limiter at t=T=50

(52:752 s) into the simulation (bottom) (T =2637:6 s).
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Figure 9. Comparison of the results of upwind, MUSCL-type and MPDATA schemes for a deformational
�ow test with the exact solution at time T=50=52:752s. The values for x between 25 and 50 are shown

for y=50. The sampling interval was set to 0.1 for the analytical solution (T =2637:6 s).

as follows:

u(x; y) =−y
r

ft

fmax
≡ −yf

v(x; y) =
x
r

ft

fmax
≡ xf

(27)

where u(x; y) and v(x; y) are the velocities in the x- and y-directions, respectively, r is the
distance from any given point to the origin of the coordinate system, fmax =0:385 is the
maximum tangential velocity and ft is given by

ft =
tanh(r)
cosh2(r)

(28)

The triangular domain consisted of equilateral triangles with edge length =0:09. The mesh
had a total of 16 384 cells. The boundary conditions and the time-marching scheme were the
same as in the rotating cone test. The simulation was run for t=4 s. The evolution of tracer
�eld in time t, is given by the exact solution:

q(x; y; t)= − tanh
[y
�
cos(ft)− x

�
sin(ft)

]
(29)

where � is set to 2 for a smooth frontogenesis.
Figure 10 shows the initial conditions and a comparison between the exact and the numerical

solutions. The simulation results are in good agreement with the exact solution. For example,
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Figure 10. The initial conditions (a), and the exact solution (b) for the Doswell
frontogenesis test compared with the solution using (c) MPDATA scheme, and

(d) a MUSCL-type scheme with slope limiter at t=4 s.

the Doswell analytical solution predicts the maximum deformation of the frontal zone near
the radius of maximum winds and this result is accurately reproduced by the numerical model
in both the MPDATA and MUSCL implementations.

6.4. Solution-adaptation

As a �nal test, the rotating-cone test was used to demonstrate the advantages of the solution-
adaptive technique. The domain was bounded within [0; 100]× [0; 100]. The cone was centred
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Figure 11. The initial conditions (a), and (b)–(d) the solution-adaptive grid solution at
three times ending after one complete revolution.

at (xc; yc)= (50; 75) with a maximum height of 0.975 unit and a radius of 10 units. The
rotational �ow �eld was de�ned in the similar manner as in the convergence study with the
exception that the constant angular velocity !, was set to 0.4. The simulation was run for
15:7079 s (time taken by the cone to complete one revolution =2�=!). The unstructured mesh
was de�ned in terms of boundary edges (100 edges on each side for the globally re�ned mesh
and 25 edges on each side for the adaptive and coarse mesh). The adaptive mesh started with
a minimum edge length of 0.337 and a maximum edge length of 4.667. As the mesh was
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Figure 12. Comparison of a rotating cone test on the adaptive, coarse and globally re�ned
meshes with the exact solution after one revolution. The pro�les shown are at y=75 for

x varying from 25 to 75 (t=15:7079 s).

adapted the mesh resolution varied from maximum edge length of roughly 5 and minimum
edge of approximately 0.20 in di�erent adaptation cycles. The globally �ne mesh had edges
ranging from 0.22 to 1.27.
The adaptation criteria was de�ned in terms of the cone radius. Three radii were de�ned—

Rcone was set to the radius of the cone; Rref was 2.5 units larger than Rcone and Rcoarse
was de�ned as 4.5 units larger than Rcone. The maximum and minimum allowable edge
lengths were also speci�ed. The cells were tagged for re�nement if a cell with large edge
lengths was found between Rcone and Rref and cells were tagged for deletion if a cell with
small edge lengths was found outside the circle de�ned by Rcoarse. The re�nement cycle
was invoked every 15 iterations and the coarsening cycle was invoked every 150
iterations.
Figure 11 shows the tracer concentration contours at the initial time, at intermediate stages,

and after one revolution for the solution-adaptive run. Figure 12 compares the concentra-
tion pro�les at y=75 for x between 25 and 75 with the exact solution. The adaptive run
is slightly more di�usive than the globally re�ned mesh run (the pro�le for the simulation
on the coarse mesh is also plotted for reference); however, overall the results are compa-
rable and the adaptive grid solution is approximately twice as fast as the globally re�ned
solution.

7. CONCLUSIONS

MPDATA has been implemented on an unstructured adaptive grid with excellent performance
for environmental �ow situations. While the scheme is not as accurate as MUSCL-type advec-
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tion schemes, neither is it as computationally expensive. Apart from speed the other advantages
of the MPDATA scheme are in its multidimensional nature (MUSCL-type schemes rely on
Riemann solvers which are one-dimensional); and the simplicity of the method itself both in
its design and implementation [25]. The e�ciency in speed becomes especially crucial for real-
time atmospheric �ow simulations which require much CPU time for the calculations related
to planetary boundary layer physics/turbulence closure, atmospheric radiation heat transfer and
cloud microphysics. The bene�t of implementing MPDATA on an unstructured grid comes
from the �exibility that such grids provide. Static adaptation of the underlying terrain is a
signi�cant improvement in GFD over the traditional nested rectilinear grids currently used;
the addition of solution-adaptive gridding provides a major (factor of 2) improvement in
performance while maintaining high accuracy locally.
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